
hy-files Documentation
Release 0.1

Tuukka Turto

Jun 13, 2017

Contents:

1 Introduction 1

2 Getting Started 3

3 Crash Course 5

4 Variables 7

5 Control Structures 9
5.1 Boolean algebra . 9
5.2 Short circuiting . 10
5.3 Common predicates . 10
5.4 Branching . 11
5.5 Looping . 11

6 Functions 13
6.1 Defining functions . 13
6.2 Optional parameters . 15
6.3 Positional parameters . 15
6.4 Higher order functions . 16
6.5 Decorators . 16
6.6 Recursion . 16
6.7 tco and all that . 16

7 Data Structures 17
7.1 Lists . 17
7.2 Dictionaries . 17
7.3 Tuples . 17
7.4 Sets . 17

8 Working with Sequences 19
8.1 Map, Filter, Reduce . 19
8.2 Comprehensions . 19
8.3 Lazy sequences . 19

9 Multimethods 21

10 Building Pipelines for Data 23

i

10.1 Function composition . 23
10.2 Threading macros . 23
10.3 doto . 23

11 Reading and Writing Files 25

12 Classes and Objects 27

13 Modules and Packages 29

14 Being Friends with Python 31

15 Macros 33

16 Version 35
16.1 0.1 . 35

17 License 37

18 Authors 39

19 What you need for this book 41

20 Who is this book for? 43

21 Conventions 45

22 Resources 47

23 Indices and tables 49

ii

CHAPTER 1

Introduction

Welcome to hy-files. This book explores some aspect of a exciting new language called Hy, which is a dialect of
Lisp1. What makes Hy somewhat different is that the language is embedded inside other language, Python. This
allows routines written in Hy call code written in Python and vice-versa.

A challenge with programming books is that while books is usually read sequentially, learning isn’t sequential. There’s
all kinds of paths, loops and detours through the subject. Some may be faster than others, while some are more useful
than others. Concepts in programming relate to each other and form a web where almost everything is connected with
everything in a manner or another. This books tries to present a path through subject of programming in Hy. While
it covers substantial amount of matter, even more matter had to be left out. Otherwise this book would have been an
unwieldy tome that was never finished. Sometimes it refers to concepts that will be covered later in detail, but I have
tried to keep that in minimum.

1 Lisp is a whole family of languages, originating from the 1950s. Modern variants include such languages as Clojure, LFE and Racket.

1

hy-files Documentation, Release 0.1

2 Chapter 1. Introduction

CHAPTER 2

Getting Started

Fill in

3

hy-files Documentation, Release 0.1

4 Chapter 2. Getting Started

CHAPTER 3

Crash Course

5

hy-files Documentation, Release 0.1

6 Chapter 3. Crash Course

CHAPTER 4

Variables

7

hy-files Documentation, Release 0.1

8 Chapter 4. Variables

CHAPTER 5

Control Structures

As the name implies, control structures are used to control which parts of the program will execute. They are used
to select between different branches in code or repeat some action multiple times. Often the choice of executing
a specific branch is done based on some value or combination of several values. First we’ll have a look at some
common predicates1 and how to combine them. After covering them, we’ll dive into various control structures and
their applications.

Boolean algebra

Boolean algebra2 is very basis of how computers operate. It consists of two values True and False and set of basic
operations and, or, not and xor.

Hy adds a little twist in the Boolean algebra. Instead of operating strictly only on True and False values, it can
operate on almost any value. Values that evaluate to True in Boolean algebra are considered to be truthy values.
Conversely, values that evaluate to False in Boolean algebra are considered to be falsey values. Following list shows
values considered falsey, all other values are considered truthy:

• None

• number 0

• any empty sequence or collection

And operator takes 0 or more arguments and returns last argument if all of them are True or no parameters were passed
at all, as shown below. Notice how in the last example we’re passing in three numbers and last one of them is returned
as the result. This is because all of them are truthy, so the final one will be returned. Sometimes this technique can be
useful, for example when you want to first check that set of variables are truthy and then perform an operation with
the last one of them.

=> (and True True)
True
=> (and True False)

1 predicate is a test that evaluates to True or False
2 Boolean algebra, also known as Boolean logic, is named after its inventor George Boole

9

hy-files Documentation, Release 0.1

False
=> (and False False)
False
=> (and)
True
=> (and 1 2 3)
3

Or operator takes 0 or more arguments and returns first truthy argument if one or more of them are True. Some
examples of usage are shown below. Notice how or without any arguments doesn’t seem to return anything. This is
because in that case it returns None, a special value denoting non-existant value (which is also considered falsey) and
REPL doesn’t print it on screen.

=> (or True True)
True
=> (or True False)
False
=> (or False False)
False
=> (or)
=> (or 1 2 3)
1

In order to see actual return type, one can use type as shown here:

=> (type (or))
<class 'NoneType'>

Sometimes there’s need to reverse Boolean value, so that True turns to False and False turns to True. That can be
achieved with not operator. It takes one argument and always return either True or False, as shown below. While it’s
possible to call not with truthy values, it will not be able to deduce corresponding opposite value, which is the reason
why only True or False is returned.

=> (not True)
False
=> (not False)
True
=> (not 1)
False
=> (not [])
True

The final operator we’re going to learn now is xor, short for exclusive or.

fill in xor here

Short circuiting

fill in details here

Common predicates

<, >, <=, >=, =, !=, integer?, odd?, even?

10 Chapter 5. Control Structures

hy-files Documentation, Release 0.1

Branching

do

if, if*, if-not, when, cond, lif, lif-not, while, unless

every?

Looping

for, break, continue

while

reference to recursion

5.4. Branching 11

hy-files Documentation, Release 0.1

12 Chapter 5. Control Structures

CHAPTER 6

Functions

Functions are basic building block of any Hy program. They let you to bundle up functionality into a reusable piece
of code with a well defined interface and then use that function in other parts of your programs. So far we have been
using functions that come with Hy and Python, but now it’s time to look into how to define them by yourselves.

Defining functions

Functions are the main mean of packaging some functionality into a reusable box and giving it a name. Once declared,
a function can be used over and over again in different parts of the program. It both saves typing and helps you
keep your program organized. A function may accept parameters that are used to relay information into it, these can
be anything data that function is supposed to process, parameters that control how function behaves and even other
functions. Functions often have return value, that is the result of a function. In this sense they’re akin to mathematical
functions. In Hy functions can also have side-effects. These are changes that occur somewhere in the program (like
setting a variable or printing on screen) or elsewhere in the computer system (like writing into a file).

Functions are defined using defn, as show in listing below. It defines a function sum-if-even, which has two formal
parameters a and b. Inside of the function there’s if statement that will first check if both arguments a and b are even
and then add them together and return the resulting number. If either one of the arguments is not even, function simply
returns 0. Defn is relatively complex tool and has several options. Next we’ll take closer look on how to use them to
your advantage.

=> (defn sum-if-even [a b]
... (if (and (even? a)
... (even? b))
... (+ a b)
... 0))
=> (sum-if-even 1 2)
0
=> (sum-if-even 2 4)
6
=> (+ (sum-if-even 2 4)
... (sum-if-even 4 4)

13

hy-files Documentation, Release 0.1

... (sum-if-even 1 2))
14

Remember how I mentioned that functions let you to abstract away functionality behind a nicely defined interface?
This actually has two facets. On the other hand, you’re giving a specific name to a specific type of functionality. This
lets you to think in terms of that name, instead of trying to keep track of everything that is going inside of that function.
Another related matter is called variable scope. If you’re defining formal parameters for your function, they’re unique
inside of it. It doesn’t matter if you (or somebody else) has already used those names somewhere in the program.
Inside of your function they’re yours to do as you please, without causing mix-up somewhere else in the program. We
can demonstrate this as shown below:

=> (defn scope-test []
... (setv a 1
... b 2)
... (+ a b))
=> (setv a 10
... b 5)
=> (scope-test)
3
=> a
10
=> b
5

Variables a and b are declared outside of the scope-test function. Variables with same names are also declared inside
of the function and used to perform a calculation. But the variables declared inside the function cease to exist after
the function completes. Hy (and Python) use something called lexical scoping, originally introduced by ALGOL. The
name itself isn’t that important, but the idea is. It might be worth your time to write little play programs and try out
different things with variables and functions to get a good grip on this.

Functions are good for breaking down a complex problem into more manageable chunks. Instead of writing down
complete instructions in one huge block how to solve the problem, you can write the basic structure or the bare
essence of the problem. A hypothetical AI routine for a wizard is shown here:

(defn wizard-ai [wizard]
(if (and (in-combat? wizard)

(badly-hurt? wizard)) (cast-teleport wizard)
(in-combat? wizard) (cast-magic-missile wizard)
(in-laboratory? wizard) (research-spells wizard)
(wander-around wizard)))

It’s very simple and hopefully easy to read too. At this level, we aren’t interested what kind of magical components
teleport spell requires or what spell research actually means. We’re just interested on breaking down the problem into
more manageable pieces. In a way, we’re coming up with our own language too, a language that talks about wizards
and spells. And it’s perfectly ok to write this part down (at least the first version), without knowing all the details of
the functions we’re using. Those details can be sorted out later and it might even be someone else’s task to do so.
Later on, we might want to add a new creature in our game and realize that we can actually use some of the functions
we came up earlier as shown below. In a way we’re building our own mini-language that talks about wizards, combat
and spells.

(defn warrior-ai [warrior]
(if (in-combat? warrior) (hit-enemy warrior)

(badly-hurt? warrior) (find-wizard warrior)
(wander-around warrior)))

14 Chapter 6. Functions

hy-files Documentation, Release 0.1

Optional parameters

Sometimes you might need to write a function or method that takes several parameters that either aren’t always needed
or can be supplied with reasonable default. One such method is string.rjust that pads a string to certain length. By
default a space is used, but different character will be used if supplied as show in next. In such occasions optional
parameters are used.

=> (.ljust "hello" 10)
"hello "
=> (.ljust "hello" 10 ".")
"hello....."

Optional parameters are declared using &optional keyword as shown in the example about fireballs. Parameters after
optional are declared having default values that are denoted as two item lists with the parameter name being first
and default value being the second element. If the default value isn’t supplied (as is the case with strength in the
example), None is used. Be mindful to use only immutable values as defaults. Using things like lists will lead into
very unexpected results.

=> (defn cast [character &optional [name "fireball"] strength]
... (if strength
... (.join " " [character "casts" strength name])
... (.join " " [character "casts" name])))

Our cast function has three parameters, out of which one (the caster) must always be given. Second parameter can
defaults to “fireball” and third one (strenght of the spell) doesn’t have default value. Inside of the function parameters
are joined together to form a string that represents spell casting. There are several ways of calling the function, as
shown here:

=> (cast "wizard")
"wizard casts fireball"

=> (cast "wizard" "lightning")
"wizard casts lightning"

=> (cast "mage" "acid cloud" "super-strong")
"mage casts super-strong acid cloud"

Positional parameters

Sometimes you might want to write a function that handles varying amount of parameters. One way to get around that
is to define large number of optional parameters, but that is both clumsy and error prone. Also, you would have to
guess maximum amount of parameters that will ever be needed and such guesses tend to go wrong.

Luckilly, there’s elegant way around the problem: positional parameters. They allow you to define a special parameter,
that holds 0 or more arguments when the function is called, depending on the amount of arguments supplied. And
of course you can mix them with the regular parameters, just make sure you don’t try to declare regular or optional
parameters after the positional one.

Positional arguments are defined with &rest keyword as shown below, where a thief err.. treasure hunter collects some
loot, which is defined as positional parameters.

=> (defn collect [character &rest loot]
... (if loot
... (.join " " [character "collected:"

6.2. Optional parameters 15

hy-files Documentation, Release 0.1

... (.join ", " loot)])

... (.join " " [character "didn't find anything"])))

In Working with Sequences we’ll go through some useful information for working with positional arguments. After
all, they’re supplied to you as a list, so things like map, filter and reduce might become handy. Below is excerpt of
REPL session showing our little looting routing in action. As you can see, we can define a variable amount of items
that the characters has found and decides to collect for the future use. In case where no positional arguments haven’t
been supplied, a different message is given.

=> (collect "tresure hunter" "diamond")
"tresure hunter collected: diamond"

=> (collect "thief" "goblet" "necklace" "purse")
"thief collected: goblet, necklace, purse"

=> (collect "burglar")
"burglar didn't find anything"

Higher order functions

Decorators

Recursion

tco and all that

16 Chapter 6. Functions

CHAPTER 7

Data Structures

Lists

Dictionaries

Tuples

Sets

17

hy-files Documentation, Release 0.1

18 Chapter 7. Data Structures

CHAPTER 8

Working with Sequences

Map, Filter, Reduce

Comprehensions

Lazy sequences

19

hy-files Documentation, Release 0.1

20 Chapter 8. Working with Sequences

CHAPTER 9

Multimethods

21

hy-files Documentation, Release 0.1

22 Chapter 9. Multimethods

CHAPTER 10

Building Pipelines for Data

Function composition

Threading macros

doto

23

hy-files Documentation, Release 0.1

24 Chapter 10. Building Pipelines for Data

CHAPTER 11

Reading and Writing Files

with file foo

25

hy-files Documentation, Release 0.1

26 Chapter 11. Reading and Writing Files

CHAPTER 12

Classes and Objects

27

hy-files Documentation, Release 0.1

28 Chapter 12. Classes and Objects

CHAPTER 13

Modules and Packages

29

hy-files Documentation, Release 0.1

30 Chapter 13. Modules and Packages

CHAPTER 14

Being Friends with Python

31

hy-files Documentation, Release 0.1

32 Chapter 14. Being Friends with Python

CHAPTER 15

Macros

Bots build bots

33

hy-files Documentation, Release 0.1

34 Chapter 15. Macros

CHAPTER 16

Version

0.1

This is the initial version of the book. It starts with a preface at Welcome to hy-files, explaining goal of the book, some
conventions and listing handy resources for where to find more information.

After the preface, the book continues into introductions in chapter Introduction, explaining more about goals of the
book and how it has been organized.

Boolean algebra (save for xor) is covered in chapter Control Structures.

Functions has basic information on how to define new functions. Different types of parameters are explained also.

35

hy-files Documentation, Release 0.1

36 Chapter 16. Version

CHAPTER 17

License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

37

hy-files Documentation, Release 0.1

38 Chapter 17. License

CHAPTER 18

Authors

Initially, this book is one person project, but I hope that it might gather enough interest and contributions from other
members of Hy community. Below is up to date list of people who have contributed to the book:

• Tuukka Turto <tuukka.turto@oktaeder.net>

39

mailto:tuukka.turto@oktaeder.net

hy-files Documentation, Release 0.1

40 Chapter 18. Authors

CHAPTER 19

What you need for this book

Computer is a good start. Hy is built using Python, so an installed Python environment is a very good thing to have.
While Hy works with several different kinds of Pythons, CPython 3.5 is recommended.

A special integrated development environment isn’t neccessary, simple text editor like Notepad, Notepad++, vi or such
will suffice. There are ways of setting up really nice Hy development environment using emacs or vim for example,
but that’s beyond the scope of this book.

41

hy-files Documentation, Release 0.1

42 Chapter 19. What you need for this book

CHAPTER 20

Who is this book for?

Previous experience with programming isn’t neccessary, as the book tries to build from ground up. The book is aimed
at people who haven’t programmed much (if at all) in Hy. Occasionally the book might refer to other programming
languages to highlight some specific aspect of Hy, but understanding of those languages isn’t needed for reading this
book.

The book is aimed for people who might have some programming experience with other languages and who are curious
about Hy or Lisps in general. It should reasonably work for people who don’t have any programming experience at
all.

43

hy-files Documentation, Release 0.1

44 Chapter 20. Who is this book for?

CHAPTER 21

Conventions

In this book, you’ll find a number of text styles used to distinguish between different types of information. Here are
some examples of them and their explanation.

A block of code is set as shown in listing below. This style is often used to highlight particular concept, structure or
behaviour of code.

(defseq fibonacci [n]
"infinite sequence of fibonacci numbers"
(if (= n 0) 0

(= n 1) 1
(+ (get fibonacci (- n 1))

(get fibonacci (- n 2)))))

Different kind of notation is used for code entered in interactive mode, as shown below. Code in such an example
should work when entered in interactive mode (or REPL for short). => and ... at the beginning of the lines shouldn’t
be entered, they’re there to denote that the example can be entered in the interactive mode. Lines without => or ...
show output of commands you just entered.

=> (defn add-up [a b]
... (+ a b))
=> (add-up 2 3)
5

New terms and important words are shown as: Important new term.

As this is a living book, it will evolve and change over time. At the beginning it is rather empty, but it will be filled
eventually. Readers are encouraged to check Version for information what parts have recently been added or majorly
edited.

45

hy-files Documentation, Release 0.1

46 Chapter 21. Conventions

CHAPTER 22

Resources

As this book can’t possibly cover everything about Hy, some more handy resources are listed here in no particular
order:

Code, open issues and other matters related to development of the language can be found at GitHub.

Up to date documenation is available online at Read the Docs. Be mindful that there are several versions of the
documentation online, so be sure to select the most applicable one from the menu bottom left.

There’s active community on IRC1 at #hy on freenode. This is probably the best place to start asking questions as
many core developers frequent the channel.

Semi-actively discussion is also held in hylang-discuss at Google groups.

1 Albeit slowly falling out of favor, Internet Relay Chat is still commonly used in many open source projects

47

https://github.com/hylang/hy
http://docs.hylang.org/
https://groups.google.com/forum/#!forum/hylang-discuss

hy-files Documentation, Release 0.1

48 Chapter 22. Resources

CHAPTER 23

Indices and tables

• genindex

• search

49

hy-files Documentation, Release 0.1

50 Chapter 23. Indices and tables

Index

B
boolean logic

and, 9
not, 10
or, 10
xor, 10

F
function

defining, 13

51

	Introduction
	Getting Started
	Crash Course
	Variables
	Control Structures
	Boolean algebra
	Short circuiting
	Common predicates
	Branching
	Looping

	Functions
	Defining functions
	Optional parameters
	Positional parameters
	Higher order functions
	Decorators
	Recursion
	tco and all that

	Data Structures
	Lists
	Dictionaries
	Tuples
	Sets

	Working with Sequences
	Map, Filter, Reduce
	Comprehensions
	Lazy sequences

	Multimethods
	Building Pipelines for Data
	Function composition
	Threading macros
	doto

	Reading and Writing Files
	Classes and Objects
	Modules and Packages
	Being Friends with Python
	Macros
	Version
	0.1

	License
	Authors
	What you need for this book
	Who is this book for?
	Conventions
	Resources
	Indices and tables

