
hy-files Documentation
Release 0.2

Tuukka Turto

Jul 13, 2017

Contents:

1 Introduction 1
1.1 What you need for this book . 1
1.2 Who is this book for? . 1
1.3 Conventions . 2
1.4 Resources . 2

2 Variables 3
2.1 Scope . 3
2.2 Types . 3

3 Control Structures 5
3.1 Boolean algebra . 5
3.2 Short circuiting . 6
3.3 Common predicates . 6
3.4 Branching . 7
3.5 Looping . 7

4 Functions 9
4.1 Defining functions . 9
4.2 Optional parameters . 11
4.3 Positional parameters . 11
4.4 Higher-order functions . 12
4.5 Decorators . 16
4.6 Recursion . 16
4.7 tco and all that . 16

5 Data Structures 17
5.1 Mutability . 17
5.2 Tuples . 17
5.3 Named tuples . 20
5.4 Sets . 22
5.5 Lists . 22
5.6 Dictionaries . 22

6 Classes and Objects 23
6.1 Initializing object . 23
6.2 Methods . 23

i

7 Version 25
7.1 Current version . 25
7.2 Past versions . 25

8 License 27

9 Authors 29

10 List of things to do 31

11 Indices and tables 33

ii

CHAPTER 1

Introduction

Welcome to hy-files. This book explores some aspect of a exciting new language called Hy, which is a dialect of
Lisp1. What makes Hy somewhat different is that the language is embedded inside other language, Python. This
allows routines written in Hy call code written in Python and vice-versa.

A challenge with programming books is that while books is usually read sequentially, learning isn’t sequential. There’s
all kinds of paths, loops and detours through the subject. Some may be faster than others, while some are more useful
than others. Concepts in programming relate to each other and form a web where almost everything is connected with
everything in a manner or another. This books tries to present a path through subject of programming in Hy. While
it covers substantial amount of matter, even more matter had to be left out. Otherwise this book would have been an
unwieldy tome that was never finished. Sometimes it refers to concepts that will be covered later in detail, but I have
tried to keep that in minimum.

Source code for the book is available for anyone to view and offer their feedback or even contributions.

What you need for this book

Computer is a good start. Hy is built using Python, so an installed Python environment is a very good thing to have.
While Hy works with several different kinds of Pythons, CPython 3.5 is recommended.

A special integrated development environment isn’t neccessary, simple text editor like Notepad, Notepad++, vi or such
will suffice. There are ways of setting up really nice Hy development environment using emacs or vim for example,
but that’s beyond the scope of this book.

Who is this book for?

Previous experience with programming isn’t neccessary, as the book tries to build from ground up. The book is aimed
at people who haven’t programmed much (if at all) in Hy. Occasionally the book might refer to other programming
languages to highlight some specific aspect of Hy, but understanding of those languages isn’t needed for reading this
book.

1 Lisp is a whole family of languages, originating from the 1950s. Modern variants include such languages as Clojure, LFE and Racket.

1

https://github.com/tuturto/hy-files

hy-files Documentation, Release 0.2

The book is aimed for people who might have some programming experience with other languages and who are curious
about Hy or Lisps in general. It should reasonably work for people who don’t have any programming experience at
all.

Conventions

In this book, you’ll find a number of text styles used to distinguish between different types of information. Here are
some examples of them and their explanation.

A block of code is set as shown in listing below. This style is often used to highlight particular concept, structure or
behaviour of code.

(defseq fibonacci [n]
"infinite sequence of fibonacci numbers"
(if (= n 0) 0

(= n 1) 1
(+ (get fibonacci (- n 1))

(get fibonacci (- n 2)))))

Different kind of notation is used for code entered in interactive mode, as shown below. Code in such an example
should work when entered in interactive mode (or REPL for short). => and ... at the beginning of the lines shouldn’t
be entered, they’re there to denote that the example can be entered in the interactive mode. Lines without => or ...
show output of commands you just entered.

=> (defn add-up [a b]
... (+ a b))
=> (add-up 2 3)
5

New terms and important words are shown as: Important new term.

As this is a living book, it will evolve and change over time. At the beginning it is rather empty, but it will be filled
eventually. Readers are encouraged to check Version for information what parts have recently been added or majorly
edited.

Resources

As this book can’t possibly cover everything about Hy, some more handy resources are listed here in no particular
order:

Code, open issues and other matters related to development of the language can be found at GitHub.

Up to date documenation is available online at Read the Docs. Be mindful that there are several versions of the
documentation online, so be sure to select the most applicable one from the menu bottom left.

There’s active community on IRC2 at #hy on freenode. This is probably the best place to start asking questions as
many core developers frequent the channel.

Semi-actively discussion is also held in hylang-discuss at Google groups.

2 Albeit slowly falling out of favor, Internet Relay Chat is still commonly used in many open source projects

2 Chapter 1. Introduction

https://github.com/hylang/hy
http://docs.hylang.org/
https://groups.google.com/forum/#!forum/hylang-discuss

CHAPTER 2

Variables

Scope

fill in

Types

3

hy-files Documentation, Release 0.2

4 Chapter 2. Variables

CHAPTER 3

Control Structures

As the name implies, control structures are used to control which parts of the program will execute. They are used
to select between different branches in code or repeat some action multiple times. Often the choice of executing
a specific branch is done based on some value or combination of several values. First we’ll have a look at some
common predicates1 and how to combine them. After covering them, we’ll dive into various control structures and
their applications.

Boolean algebra

Boolean algebra2 is very basis of how computers operate. It consists of two values True and False and set of basic
operations and, or, not and xor.

Hy adds a little twist in the Boolean algebra. Instead of operating strictly only on True and False values, it can
operate on almost any value. Values that evaluate to True in Boolean algebra are considered to be truthy values.
Conversely, values that evaluate to False in Boolean algebra are considered to be falsey values. Following list shows
values considered falsey, all other values are considered truthy:

• None

• number 0

• any empty sequence or collection

And operator takes 0 or more arguments and returns last argument if all of them are True or no parameters were passed
at all, as shown below. Notice how in the last example we’re passing in three numbers and last one of them is returned
as the result. This is because all of them are truthy, so the final one will be returned. Sometimes this technique can be
useful, for example when you want to first check that set of variables are truthy and then perform an operation with
the last one of them.

=> (and True True)
True
=> (and True False)

1 predicate is a test that evaluates to True or False
2 Boolean algebra, also known as Boolean logic, is named after its inventor George Boole

5

hy-files Documentation, Release 0.2

False
=> (and False False)
False
=> (and)
True
=> (and 1 2 3)
3

Or operator takes 0 or more arguments and returns first truthy argument if one or more of them are True. Some
examples of usage are shown below. Notice how or without any arguments doesn’t seem to return anything. This is
because in that case it returns None, a special value denoting non-existant value (which is also considered falsey) and
REPL doesn’t print it on screen.

=> (or True True)
True
=> (or True False)
False
=> (or False False)
False
=> (or)
=> (or 1 2 3)
1

In order to see actual return type, one can use type as shown here:

=> (type (or))
<class 'NoneType'>

Sometimes there’s need to reverse Boolean value, so that True turns to False and False turns to True. That can be
achieved with not operator. It takes one argument and always return either True or False, as shown below. While it’s
possible to call not with truthy values, it will not be able to deduce corresponding opposite value, which is the reason
why only True or False is returned.

=> (not True)
False
=> (not False)
True
=> (not 1)
False
=> (not [])
True

The final operator we’re going to learn now is xor, short for exclusive or.

fill in xor here

Short circuiting

fill in details here

Common predicates

<, >, <=, >=, =, !=, integer?, odd?, even?

6 Chapter 3. Control Structures

hy-files Documentation, Release 0.2

Branching

do

if, if*, if-not, when, cond, lif, lif-not, while, unless

every?

Looping

for, break, continue

while

reference to recursion

3.4. Branching 7

hy-files Documentation, Release 0.2

8 Chapter 3. Control Structures

CHAPTER 4

Functions

Functions are basic building block of any Hy program. They let you to bundle up functionality into a reusable piece
of code with a well defined interface and then use that function in other parts of your programs. So far we have been
using functions that come with Hy and Python, but now it’s time to look into how to define them by yourselves.

Defining functions

Functions are the main mean of packaging some functionality into a reusable box and giving it a name. Once declared,
a function can be used over and over again in different parts of the program. It both saves typing and helps you
keep your program organized. A function may accept parameters that are used to relay information into it, these can
be anything data that function is supposed to process, parameters that control how function behaves and even other
functions. Functions often have return value, that is the result of a function. In this sense they’re akin to mathematical
functions. In Hy functions can also have side-effects. These are changes that occur somewhere in the program (like
setting a variable or printing on screen) or elsewhere in the computer system (like writing into a file).

Functions are defined using fn, which creates a new function. In order to use the defined function, it usually needs
to be bound to a name. This pattern is so common that a special shortcut called defn has been added. It takes name
and definition of a function and then creates and binds the function into the name. Following two examples will have
identical results:

(setv hello (fn [person] (print "hello " person)))

(defn hello [person]
(print "hello " person))

Below is another example of using defn. It defines a function sum-if-even, which has two formal parameters a and b.
Inside of the function there’s if statement that will first check if both arguments a and b are even and then add them
together and return the resulting number. If either one of the arguments is not even, function simply returns 0. Unlike
many other languages, Hy doesn’t have explicit return keyword. As you can see, the value of last expression executed
is also the return value of the function. Defn is relatively complex tool and has several options. Next we’ll take closer
look on how to use them to your advantage.

9

hy-files Documentation, Release 0.2

=> (defn sum-if-even [a b]
... (if (and (even? a)
... (even? b))
... (+ a b)
... 0))
=> (sum-if-even 1 2)
0
=> (sum-if-even 2 4)
6
=> (+ (sum-if-even 2 4)
... (sum-if-even 4 4)
... (sum-if-even 1 2))
14

Remember how I mentioned that functions let you to abstract away functionality behind a nicely defined interface?
This actually has two facets. On the other hand, you’re giving a specific name to a specific type of functionality. This
lets you to think in terms of that name, instead of trying to keep track of everything that is going inside of that function.
Another related matter is called variable scope. If you’re defining formal parameters for your function, they’re unique
inside of it. It doesn’t matter if you (or somebody else) has already used those names somewhere in the program.
Inside of your function they’re yours to do as you please, without causing mix-up somewhere else in the program. We
can demonstrate this as shown below:

=> (defn scope-test []
... (setv a 1
... b 2)
... (+ a b))
=> (setv a 10
... b 5)
=> (scope-test)
3
=> a
10
=> b
5

Variables a and b are declared outside of the scope-test function. Variables with same names are also declared inside
of the function and used to perform a calculation. But the variables declared inside the function cease to exist after
the function completes. Hy (and Python) use something called lexical scoping, originally introduced by ALGOL. The
name itself isn’t that important, but the idea is. It might be worth your time to write little play programs and try out
different things with variables and functions to get a good grip on this.

Functions are good for breaking down a complex problem into more manageable chunks. Instead of writing down
complete instructions in one huge block how to solve the problem, you can write the basic structure or the bare
essence of the problem. A hypothetical AI routine for a wizard is shown here:

(defn wizard-ai [wizard]
(if (and (in-combat? wizard)

(badly-hurt? wizard)) (cast-teleport wizard)
(in-combat? wizard) (cast-magic-missile wizard)
(in-laboratory? wizard) (research-spells wizard)
(wander-around wizard)))

It’s very simple and hopefully easy to read too. At this level, we aren’t interested what kind of magical components
teleport spell requires or what spell research actually means. We’re just interested on breaking down the problem into
more manageable pieces. In a way, we’re coming up with our own language too, a language that talks about wizards
and spells. And it’s perfectly ok to write this part down (at least the first version), without knowing all the details of
the functions we’re using. Those details can be sorted out later and it might even be someone else’s task to do so.

10 Chapter 4. Functions

hy-files Documentation, Release 0.2

Later on, we might want to add a new creature in our game and realize that we can actually use some of the functions
we came up earlier as shown below. In a way we’re building our own mini-language that talks about wizards, combat
and spells.

(defn warrior-ai [warrior]
(if (in-combat? warrior) (hit-enemy warrior)

(badly-hurt? warrior) (find-wizard warrior)
(wander-around warrior)))

Optional parameters

Sometimes you might need to write a function or method that takes several parameters that either aren’t always needed
or can be supplied with reasonable default. One such method is string.rjust that pads a string to certain length. By
default a space is used, but different character will be used if supplied as show in next. In such occasions optional
parameters are used.

=> (.ljust "hello" 10)
"hello "
=> (.ljust "hello" 10 ".")
"hello....."

Optional parameters are declared using &optional keyword as shown in the example about fireballs. Parameters after
optional are declared having default values that are denoted as two item lists with the parameter name being first
and default value being the second element. If the default value isn’t supplied (as is the case with strength in the
example), None is used. Be mindful to use only immutable values as defaults. Using things like lists will lead into
very unexpected results.

=> (defn cast [character &optional [name "fireball"] strength]
... (if strength
... (.join " " [character "casts" strength name])
... (.join " " [character "casts" name])))

Our cast function has three parameters, out of which one (the caster) must always be given. Second parameter can
defaults to “fireball” and third one (strenght of the spell) doesn’t have default value. Inside of the function parameters
are joined together to form a string that represents spell casting. There are several ways of calling the function, as
shown here:

=> (cast "wizard")
"wizard casts fireball"

=> (cast "wizard" "lightning")
"wizard casts lightning"

=> (cast "mage" "acid cloud" "super-strong")
"mage casts super-strong acid cloud"

Positional parameters

Sometimes you might want to write a function that handles varying amount of parameters. One way to get around that
is to define large number of optional parameters, but that is both clumsy and error prone. Also, you would have to
guess maximum amount of parameters that will ever be needed and such guesses tend to go wrong.

4.2. Optional parameters 11

hy-files Documentation, Release 0.2

Luckilly, there’s elegant way around the problem: positional parameters. They allow you to define a special parameter,
that holds 0 or more arguments when the function is called, depending on the amount of arguments supplied. And
of course you can mix them with the regular parameters, just make sure you don’t try to declare regular or optional
parameters after the positional one.

Positional arguments are defined with &rest keyword as shown below, where a thief err.. treasure hunter collects some
loot, which is defined as positional parameters.

=> (defn collect [character &rest loot]
... (if loot
... (.join " " [character "collected:"
... (.join ", " loot)])
... (.join " " [character "didn't find anything"])))

In working_with_sequences we’ll go through some useful information for working with positional arguments. After
all, they’re supplied to you as a list, so things like map, filter and reduce might become handy. Below is excerpt of
REPL session showing our little looting routing in action. As you can see, we can define a variable amount of items
that the characters has found and decides to collect for the future use. In case where no positional arguments haven’t
been supplied, a different message is given.

=> (collect "tresure hunter" "diamond")
"tresure hunter collected: diamond"

=> (collect "thief" "goblet" "necklace" "purse")
"thief collected: goblet, necklace, purse"

=> (collect "burglar")
"burglar didn't find anything"

Higher-order functions

Higher-order functions are just ordinary functions that have functions as their formal parameters or return value (or
even both). In essence, they are functions that deal with other functions, hence the name. They are useful in many
situations, allowing one to write generic code that can be easily adapted to handle specific cases. For example, here is
an example of making an alchemy potion. Each potion has dry ingredients and one or more liquids. Dry ingredients are
simply mixed together, while liquids might need different approach depending on what kind of potion is being made.
The choice of how to prepare liquids is left to the discretion of the alchemist and they need to supply mix-potion with
the function that they would like to use to prepare liquids.

(defn mix-potion [ingredients liquids prepare]
(setv mixture (mix ingredients))
(setv liquid (prepare liquids))
(combine liquid mixture))

Lets pretend that some other alchemist has defined different ways of preparing mixtures for us as show below:

(defn stir [liquids]
...)

(defn slosh [liquids]
...)

(defn carefully-mix [liquids]
...)

12 Chapter 4. Functions

hy-files Documentation, Release 0.2

On a superficial level, each function looks same. They might have different names, but they have same amount
of parameters and return similar things (mixture of liquids). To use them in potion making, our alchemist can do
something like this:

(mix-potion ["pixie dust", "fly wings"]
["water", "juice"]
slosh)

(mix-potion ["olive"]
["gin", "vermouth"]
stir)

(mix-potion ["newt eyes", "dragon nail", "basilisk scale"]
["nitric acid", "hydrochloric acid"]
carefully-mix)

Each of these would create a new potion, using the specified ingredients, liquids and method of combining liquids.
Such way of programming lets us to write general code, which is not interested on the tiny details, but in the overall
process of how to do something. While working with such code, the programmer can concentrate on problem at the
hand and defer details to another time or even have somebody else to help writing them.

It is also possible to write functions that create new function when called. While it is possible to use defn to do so,
often it is simpler to use fn. These functions are sometimes called anonymous, as they are not bound to a name.

To illustrate this, lets look a different kind of problem. Our friends in gnomish bank are handling deposits of customers
from various different regions. While gold is easy to handle, it is the letters that are causing teller gnomes headache.
Even simple things like greetings in the beginning of a letter are hard to keep in order as elfs, humans and orcs all have
different customs that gnomes try to observe. In order to alleviate this problem, one particularly crafty gnome has
designed an automatic letter writing system. Like everything that gnomes do, the system is very ornate and flexible.
It consists of very many pieces that can be combined together in myriad ways. One such part is greeter-crafter. When
given a culture, this device will construct another device which will know how to greet a person of that culture.

(defn greeter-crafter [culture]
(if (= culture "elven") (fn [person]

(+ "The most illustrious " person.name))
(= culture "human") (fn [person]

(+ "Greetings " person.name))
(= culture "orcish") (fn [person]

(+ "Saluations " person.name))
(fn [person]
"Dear sir or madam")))

Heart of the routine is a case study. culture parameter is examined and corresponding branch of if statement is executed.
There are three special cases, each corresponding to a specific culture and a generic one that is used when unknown
culture is given as an argument. Each of the branches will create a new function and return it. Following piece of code
highlights how greeter-crafter could be used to personalize monthly report letter.

(defn handle-monthly-letter [person]
(setv greeter (greeter-crafter (culture-of person)))
(setv letter (+ (greeter person)

(write-body person)
(in-closing person)))

(send letter))

First a greeter is constructed by using greeter-crafter. Then a letter consisting of greeting, body of text and closing
statement is crafted and finally the letter is sent. In case gnomes would like to send yearly letters too, they could reuse
the greeter-crafter and would only need to create new gadget that knows how to write body of the yearly letter. And if

4.4. Higher-order functions 13

hy-files Documentation, Release 0.2

later a new culture would start doing business with the gnomes, they would add this culture to greeter-crafter and all
different types of letters would automatically start greeting this new culture correctly.

And if gnomes would require more intricate system, nothing would stop them from creating greeter-crafter-creator,
a device that can build greeter-crafters which know how to build greeters that know how to address members of a
specific culture. Very sophisticated, intricate and maybe even confusing system.

Closures

Closures are functions accessing symbols outside their scope (we talked about scope earlier in Scope). When such a
function is defined, it captures symbols that it refers to, but are outside of its scope. These symbols must have been
defined in the outer scope of the function. An example will clarify this:

=> (defn create-adder [number]
... (fn [n] (+ n number)))

=> (setv add-1 (create-adder 1))
=> (add-1 5)
6

=> (setv add-5 (create-adder 5))
=> (add-1 (add-5 2))
8

create-adder is a higher-order function (we talked about these just recently at Higher-order functions that takes pa-
rameter number and returns a new function that takes parameter n. When called, this new function will add n and
number together. It has captured the value of number when it was initially created.

This useful technique can be used to cut down amount of classes (We will go over them in detail later at Classes and
Objects, but now it is enough to know that they are a way of packaging data and functions that operate on that data
together). As always, an example will hopefully clarify the idea.

A new smithy has been opened by a drawf. It is small, but has latest automated tools developed by gnomes, which
helps the smith to get their work done neatly and efficiently. There’s a device from creating swords, another for shoe
nails and third one for iron keys:

(defn create-sword [] ...)

(defn create-shoenail [] ...)

(defn create-key [] ...)

Each of these tools create a basic item that the smith can then continue work on and customize according to their
client’s needs. However, as fame and client base of the smith grows, they soon find themself unable to take all the jobs
that are offered to them. The smith considers hiring another smith to work for them, but that would require building
a bigger smithy and splitting the profits. Instead of that, the smith asks gnomes to build them more tools for different
kinds of items. The first batch of such tools is for swords only:

(defn create-short-sword [] ...)

(defn create-long-sword [] ...)

(defn create-claymore [] ...)

While the approach works, the drawf is a bit unhappy as now they have lots and lots of very specialized tools all over
the smithy. What used to be nice and tidy smithy is now very cramped and untidy place. Something needs to be done
before the smith accidentally steps on one of the tools that are now laying on every possible surface. Ingenious gnomes

14 Chapter 4. Functions

hy-files Documentation, Release 0.2

quickly come up with a solution. They design a special sword maker machine, that can make all kinds of swords. User
only needs to supply it with a dictionary (covered in more detail in Dictionaries) that describes what kind of sword
should be created:

(setv short-sword { :blade-length 'short
:blade-width 'medium
:hilt 'standard })

(create-sword short-sword)

Business was booming and smith was really happy with his reduced amount of tools. Smithy was neat and tidy again.
Sure, they had to keep track of little metal discs that contained dictionaries for preparing different kinds of items.
While the smith tried to be careful and pay attention to item makers and discs, sometimes they still managed to use
wrong type of device with a disc. Usually disc and device were so incompatible that nothing happened, but from time
to time he ended up with tiny daggers or sword sized nails that were simply unusable. Discs were clearly labeled,
but the devices were hard to keep track of. Like always, gnomes had a solution for this problem too. Each dictionary
would have information that clearly indicated what kind of item it would create. And instead of multiple devices, there
were only one device that was needed.

(setv short-sword { :type 'sword
:blade-length 'short
:blade-width 'medium
:hilt 'standard })

(create-item short-sword)

However, this omni-maker was very complex device and the smith could only afford one of them. Suddenly they had
to spend lot of time waiting for the omni-device to finish, so that they could load next dictionary and start making the
next item. Especially frustrating this was when multiple similar items had been ordered. But again, the gnomes has a
solution. Omni-maker was modified to create not items, but devices for creating those items. This higher-order maker
could then used to right tool for right job when needed and creating three similar swords was easy. They could even
be engraved with the owner’s name:

(setv sword-creator (omni-maker sword-dictionary))
(sword-creator "Pete the Adventurer")
(sword-creator "Uglak the Goblin")
(sword-creator "Jaska the Conqueror")

When device was no longer needed, it could be melted down in forge and used to create different device later when
needed again.

In the silly example earlier, item makers were analoguous to functions. The smith started with set of specialized
functions and kept adding more and more that were doing sort of similar tasks than the ones they already had. Gnomes
then fixed this eventually coming up with a omni-maker, which in programming terms was higher-order function. It
could create another function that performed the required task and could be reused as often as needed. The resulting
function was also a closure, as it captured the dictionary passed to. We didn’t look inside of these devices, but they
might look something like the following code:

(defn omni-maker [config]
(setv item-type (:type config))
(if (= item-type 'sword) (fn [engraving]

(setv item (new-sword))
(blade-length item (:blade-length config))
(blade-width item (:blade-width config))
(add-hilt (:hilt config))
(add-text engraving))

(= item-type 'helmet) (fn [engraving]

4.4. Higher-order functions 15

hy-files Documentation, Release 0.2

..)))

Notice how argument passed into config parameter of omni-maker is later on used by anonymous function that was
created by omni-maker.

Note: Closure does not create copies of values it captures, but uses them as they are. If you create closure that uses
mutable variable, be extra mindful that you do not accidentally change it. Changed values will be visible to every
closure using the original value.

Closures are useful when you want to have a group of functions that do a similar task, but slightly differently. In
such case you can create a factory function that constructs specialized functions for you, which are using data they
captured while being created. For example, a function that converts values between two different system (say, metric
and imperial), could have the conversion factor fed to it by a factory function. The act of converting between two
linearly related systems is always the same, regardless of the factor. You can represent the act of conversion in one
part of the system and reuse it multiple times for converting between different systems.

=> (defn create-converter [factor]
... (fn [value]
... (* value factor)))

=> (setv feet-to-meters (create-converter 0.3048))
=> (feet-to-meters 5)
1.524

=> (setv kg-to-pounds (create-converter 2.2046))
=> (kg-to-pounds 5)
11.023

Decorators

Decorators add a whole new layer to functions, figuratively and literally.

Recursion

tco and all that

16 Chapter 4. Functions

CHAPTER 5

Data Structures

Simple programs can be written that use just few variables to hold the data that they need. But as the programs grow
more complex and they handle more data, single variables are not going to be enough. At that point you will need to
use data structures to hold your data and keep it organized. Different data structures are suited for different kinds of
tasks and there are lots of different structures, each with pros and cons. In this chapter we are going to have a look at
some of the most common ones that you might need.

We will meet a new friend, apprentice filer Oseo, who has recently started working at the filing department of 4th
Order. He will introduce several different ways of organizing data for us.

Mutability

Before we start exploring different kinds of data structures, we have to talk a bit about mutability. Some of the data
structures covered here are mutable, while others are immutable. The difference between the two are that once you
have created an immutable data structure, it can never be modified. Using immutable data structures can help you to
minimize errors where program inadvertly changes some important data.

In terms of filing department, it means that after Oseo has created an filing entry, nobody is ever allowed to change it.
If such information will need updating later, the only way to do so is to create a new entry and replace the old one with
it.

Tuples

Our first structure is tuple. They’re ordered (meaning that the values you put in have well defined and meaningful
location within the data structure), immutable collection of zero or more values.

Creation

There are two ways of creating tuples: using , literal or tuple initializer (initializers are covered in more detail later
when we talk about classes and objects).

17

hy-files Documentation, Release 0.2

The , literal takes a list of values that are placed into the tuple:

=> (, 1 2 3)
(, 1 2 3)

=> (, "one" 2 "III")
(, "one" 2 "III")

And nothing prevents you from creating a nested tuple, a tuple that has one or more tuples inside of it:

=> (setv address (, (, "John" "Smith") (, "Pyramid Road 1" "Cairo")))
(, (, "John" "Smith") (, "Pyramid Road 1" "Cairo"))
=> (first address)
(, "John" "Smith")

Todo

link to iterables here

tuple initializer take a single iterable, which items are used to initialize a new tuple. For example, one can take a list
and use it to create a new tuple that has same elements in it:

=> (setv sizes ["small" "medium" "large"])
=> (tuple sizes)
(, "small" "medium" "large")

Common operations

While it is not possible to modify tuple once it has been created, there are still several other operations that can be
done. Next we are going to look at some of the most common ones.

Just creating tuples is not going to be that useful, we want a way to get back the data that was originally put in. For
that we have three operations at our disposal: first, second and get.

=> (setv data (, "quick" "brown" "fox"))
(, "quick" "brown" "fox")
=> (first data)
"quick"
=> (second data)
"brown"
=> (get data 2)
"fox"

Notice how get uses zero based indexing. Number of the first element is 0, second one is 1 and third one is 2 (and so
on). Using negative indexes is possible too. In that case counting starts from the end of the tuple:

=> (get data -1)
"fox"
=> (get data -2)
"brown"

If you have two tuples, you can generally compare if they are equal or not (I say generally, because if they contain
things that can not be compared, you can not compare two tuples). For the comparison, old friends of = and != are
used (we talked about them earlier in Common predicates).

18 Chapter 5. Data Structures

hy-files Documentation, Release 0.2

=> (= (, 1 2 3) (, 1 2 3))
true
=> (!= (, 1 2 3) (, 1 2 3))
false

There are few functions for examining contents of a tuple. You can check if an element is in tuple using in, how many
times certain element is in tuple using .count (note the dot at the beginning, it is significant as it denotes that count is a
method of tuple. We will cover these in more detail when we talk about methods) or you can find first index the item
appears in tuple using .index. Finally, to count how many items are in tuple, we use len.

=> (setv data (, 3 1 4 1 5 9 2 6))
=> (len data)
8
=> (in 5 data)
true
=> (.index data 5)
4
=> (.count data 1)
2

Finally, there are two ways of building larger tuples from smaller one: + creates a new tuple that has all the elements
of two other tuples combined and * is used to create new tuple that has items of the original tuple repeatedly:

=> (+ (, 1 2 3) (, 4 5 6))
(, 1 2 3 4 5 6)
=> (* 2 (, 1 2))
(, 1 2 1 2)

Oseo’s work

Within filing department, Oseo usually uses tuples for storing small pieces of data. Since they has to remember
what each data in given index stands for, having large structures can be error prone. But for things like coordinates,
measurements (value and unit together) and such tuples are good.

=> (defn make-measurement [value unit]
... (, value unit))

=> (set stick-length (make-measurement 1.2 "meters"))
=> (first stick-length)
1.2
=> (second stick-length)
"meters"

Sometimes Oseo’s work was related to mailing. Not the actual carrying the letters and parcels around though, but
marking them based on which priority they were. Parcels were then moved forward to a sorting section, where they
would be dispatched to correct direction, depending on the label Oseo had used.

(defn attach-label [label parcel]
(, label parcel))

(defn set-priority [parcel]
(if (paid-extra? parcel) (attach-label 'priority parcel)

(vip-customer? parcel) (attach-label 'priority parcel)
(no-postage-paid? parcel) (attach-label 'snail parcel)
(attach-label 'regular parcel)))

5.2. Tuples 19

hy-files Documentation, Release 0.2

(defn dispatch-by-priority [tagged-parcel]
(setv (, speed parcel) tagged-parcel)
(if (= speed 'priority) (send-immediately parcel)

(= speed 'regular) (send-evening parcel)
(send-later parcel)))

Notice how dispatch-by-priority deftly takes apart tuple of two items and assigns them to local variables with one setv.
This is called destructuring and is useful technique. It allows you to take a tuple or list (which we will cover a bit
later in Oseo’s work) and assign each individual element to a variable. Amount of symbol names in first tuple have to
match to the amount of elements in the second one, otherwise an error will be reported.

In some rare cases already labeled parcel is deemed to be more important or less important than what Oseo originally
labeled it. Since labeling can not be altered after the creation, a completely new label has to be created that has new
priority, but the old parcel. In such a case simply extracting the tuple and creating a new one is all that needs to be
done.

(defn relabel-parcel [label tagged-parcel]
(setv (, old-label parcel) tagged-parcel)
(, label parcel))

Named tuples

Named tuples are quite similar to regular ones and offer all the same tools (and then some more). The advantage of
named tuples over regular ones is that their fields can have descriptive names. Instead of having to remember what data
is stored in which index, the programmer only has to remember what name fields have been given. This also makes it
easier to read code written by someone else, as you do not have to guess what is stored in index 2 for example.

Named tuples are not available by default, so you have to import the appropriate function as described in modules-
and-packages-importing. This is needed at the beginning of every file where you want to use namedtuple function and
in REPL before you use the function:

=> (import [collections [namedtuple]])

First step is to create a type to represent the specific named tuple and store it somewhere for future use:

(setv Measurement (namedtuple "Measurement" ["value" "unit"]))

After the type has been created, it can be used just like any other ordinary type. Attributes that we specified earlier are
available and can be accessed:

=> (setv box-width (Measurement 5 "meters"))
=> (. box-width unit)
"meters"
=> (. box-width value)
5

Todo

keyword parameters link here

One can use keyword parameters to make creation of a tuple clear:

20 Chapter 5. Data Structures

hy-files Documentation, Release 0.2

=> (setv box-height (Measurement :unit "meters" :value 2)
=> (. box-height value)
2

Indexed access and deconstructing works just like with regular tuples:

=> (first box-width)
5
=> (setv (, measurement unit) box-width)
(5, "meters")
=> unit
"meters"

Oseo’s work

Oseo was really delighted when he learned about named tuples. No more second guessing what was stored in the 3rd
element of a tuple. Names would help him and his colleaques at the filing department to keep things in neat order from
now on. Instead of fixing the old labeling system for parcels (after all, it was working just fine), he was tasked with a
new problem: interdepartment mail system.

Filing department was only one of the many departments of the 4th Order and sometimes they needed to communicate
with each other. The problem was that the 4th Order had grown very organically, sprouting new departments here
and there and was generally really convoluted mess. All communications between the departments was rather ad hoc
solutions and it took considerable amount of time and energy to even track down how to send message to a specific
department. There were just so many different systems in use.

To alleaviate the problem, Oseo decided that there needs to be one central location within filing department, where one
can simply drop their message in a tiny metal cylinder, that then gets delivered to destination with appropriate means:

(setv Message (namedtuple "Message" [recipient department message-text]))

(create-message [recipient department text]
(Message :recipient recipient

:department department
:message-text text))

(drop-off-message [message]
(setv wrapped (wrap-message message))
(dispatch-message wrapped))

Because there are many different ways of delivering message, Oseo built a system that wraps original message inside
another metal tube. This metal tube is constructed specifically to the specifications of the target department. Some
prefer plain tube, some require intricate carvings. They all have slightly different expectations on how addresses are
written even. But all these details are taken care by wrap-message function.

dispatch-message is responsible for routing wrapped message to correct direction. It does this by examining
wrapped message, which contains information what kind of system should be used in routing:

(defn dispatch-message [message]
(setv system (. message routing-method))
(if (= system 'pressure-tube) (route-pressure-tube message)

(= system 'pigeon) (route-pigeon message)
(= system 'courier) (route-courier message))
(manual-routing message))

Each and every routing system has unique set of data that they need for correctly routing the wrapped message:

5.3. Named tuples 21

hy-files Documentation, Release 0.2

(defn route-pressure-tube [message]
(setv tube (. message tube))
(setv pressure (if (= (. message priority) 'high)

'extra-pressure
'regular-pressure))

(insert-message tube message)
(set-pressure tube pressure))

(defn route-pigeon [message]
(setv destination (. message district))
(setv pigeon-house (select-house destination))
(setv pigeon (take-pigeon pigeon-house))
(attach-message pigeon)
(release-pigeon pigeon))

Here is a little trick that Oseo came up with: Since every wrapped message has some common information and
some information specific to the routing method, Oseo defined multiple types of named tuples for the task. This way
wrapped messages sent via pressure tube do not have to know anything about carrier pigeons and vice versa. Oseo
anticipates that new methods will be added in the future and wanted to build a system that is easy enough to extend at
that point:

(setv PigeonMessage (namedtuple "PigeonMessage"
["routing-method" "district"]))

(setv TubeMessage (namedtuble "TubeMessage"
["routing-method" "tube" "priority"]))

Sets

Oseo’s work

Lists

Dictionaries

Oseo’s work

22 Chapter 5. Data Structures

CHAPTER 6

Classes and Objects

Initializing object

Methods

23

hy-files Documentation, Release 0.2

24 Chapter 6. Classes and Objects

CHAPTER 7

Version

Current version

0.2

Version 0.2 is currently being worked on and list of major changes will be added here as they are being done.

• restructure index and introduction

• higher-order functions, closures

Past versions

0.1

This is the initial version of the book. It starts with a preface at Welcome to hy-files, explaining goal of the book, some
conventions and listing handy resources for where to find more information.

After the preface, the book continues into introductions in chapter Introduction, explaining more about goals of the
book and how it has been organized.

Boolean algebra (save for xor) is covered in chapter Control Structures.

Functions has basic information on how to define new functions. Different types of parameters are explained also.

25

hy-files Documentation, Release 0.2

26 Chapter 7. Version

CHAPTER 8

License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

27

hy-files Documentation, Release 0.2

28 Chapter 8. License

CHAPTER 9

Authors

Initially, this book is one person project, but I hope that it might gather enough interest and contributions from other
members of Hy community. Below is up to date list of people who have contributed to the book:

• Tuukka Turto <tuukka.turto@oktaeder.net>

29

mailto:tuukka.turto@oktaeder.net

hy-files Documentation, Release 0.2

30 Chapter 9. Authors

CHAPTER 10

List of things to do

This is a laundry list of things needing to be addressed.

Todo

link to iterables here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hy-
files/checkouts/latest/doc/source/data_structures.rst, line 74.)

Todo

keyword parameters link here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/hy-
files/checkouts/latest/doc/source/data_structures.rst, line 270.)

31

hy-files Documentation, Release 0.2

32 Chapter 10. List of things to do

CHAPTER 11

Indices and tables

• genindex

• search

33

hy-files Documentation, Release 0.2

34 Chapter 11. Indices and tables

Index

B
boolean logic

and, 5
not, 6
or, 6
xor, 6

D
datastructures

dictionary, 22
list, 22
mutability, 17
named tuple, 20
set, 22
tuple, 17

F
function

anonymous, 13
closure, 14
defining, 9
optional parameters, 11
positional parameters, 11

T
tuple

destructuring, 20

V
variable

scope, 3
type, 3

35

	Introduction
	What you need for this book
	Who is this book for?
	Conventions
	Resources

	Variables
	Scope
	Types

	Control Structures
	Boolean algebra
	Short circuiting
	Common predicates
	Branching
	Looping

	Functions
	Defining functions
	Optional parameters
	Positional parameters
	Higher-order functions
	Decorators
	Recursion
	tco and all that

	Data Structures
	Mutability
	Tuples
	Named tuples
	Sets
	Lists
	Dictionaries

	Classes and Objects
	Initializing object
	Methods

	Version
	Current version
	Past versions

	License
	Authors
	List of things to do
	Indices and tables

